9 research outputs found

    Prognostic implications of left ventricular hypertrophy

    Get PDF
    Left ventricular hypertrophy (LVH) was one of the earliest studied echocardiographic characteristics of the left ventricle. As the myriad of measurable metrics has multiplied over recent years, this reliable and relevant variable can often be overlooked. In this paper, we discuss appropriate techniques for accurate analysis, underlying pathophysiology, and the contributions from various risk factors. The prognostic implications of LVH on stroke, serious arrhythmias, and sudden cardiac death are reviewed. Finally, we examine the effect of therapy to reduce LVH and the resultant clinical outcomes. (C) 2018 Elsevier Inc. All rights reserved

    Echocardiographic assessment of degenerative mitral stenosis: a diagnostic challenge of an Eemerging cardiac disease

    Get PDF
    Degenerative mitral stenosis (DMS) is characterized by decreased mitral valve (MV) orifice area and increased transmitral pressure gradient due to chronic noninflammatory degeneration and subsequent calcification of the fibrous mitral annulus and the MV leaflets. The “true” prevalence of DMS in the general population is unknown. DMS predominantly affects elderly individuals, many of whom have multiple other comorbidities. Transcatheter MV replacement techniques, although their long-term outcomes are yet to be tested, have been gaining popularity and may emerge as more effective and relatively safer treatment option for patients with DMS. Echocardiography is the primary imaging modality for evaluation of DMS and related hemodynamic abnormalities such as increased transmitral pressure gradient and pulmonary arterial pressure. Classic echocardiographic techniques used for evaluation of mitral stenosis (pressure half time, proximal isovelocity surface area, continuity equation, and MV area planimetry) lack validation for DMS. Direct planimetry with 3-dimensional echocardiography and color flow Doppler is a reasonable technique for determining MV area in DMS. Cardiac computed tomography is an essential tool for planning potential interventions or surgeries for DMS. This article reviews the current concepts on mitral annular calcification and its role in DMS. We then discuss the epidemiology, natural history, differential diagnosis, mechanisms, and echocardiographic assessment of DMS

    Cardiac Rehabilitation and Exercise Training in the Elderly

    No full text
    Purpose of Review With recent improvements in cardiovascular care and prevention, the demographic of individuals enrolled into cardiac rehabilitation (CR) is shifting towards an older set of individuals. Management plans for elderly cardiovascular patients must consider processes associated with aging, sarcopenia, cognitive impairment, and inflammation all contributing to declining functional capacity

    The prognostic implications of outpatient diuretic dose in heart failure

    No full text
    In 111 patients with left ventricular ejection fraction ≤30% who required hospitalization for heart failure, we examined the association between outpatient dose of diuretic agents and all-cause mortality. In comparison to patients who were not on treatment with diuretics prior to hospitalization, patients being treated with 'low' doses of diuretics

    Development and implementation of a quality improvement process for echocardiographic laboratory accreditation

    No full text
    We describe our process for quality improvement (QI) for a 3-year accreditation cycle in echocardiography by the Intersocietal Accreditation Commission (IAC) for a large group practice. Echocardiographic laboratory accreditation by the IAC was introduced in 1996, which is not required but could impact reimbursement. To ensure high-quality patient care and community recognition as a facility committed to providing high-quality echocardiographic services, we applied for IAC accreditation in 2010. Currently, there is little published data regarding the IAC process to meet echocardiography standards. We describe our approach for developing a multicampus QI process for echocardiographic laboratory accreditation during the 3-year cycle of accreditation by the IAC. We developed a quarterly review assessing (1) the variability of the interpretations, (2) the quality of the examinations, (3) a correlation of echocardiographic studies with other imaging modalities, (4) the timely completion of reports, (5) procedure volume, (6) maintenance of Continuing Medical Education credits by faculty, and (7) meeting Appropriate Use Criteria. We developed and implemented a multicampus process for QI during the 3-year accreditation cycle by the IAC for Echocardiography. We documented both the process and the achievement of those metrics by the Echocardiography Laboratories at the Ochsner Medical Institutions. We found the QI process using IAC standards to be a continuous educational experience for our Echocardiography Laboratory physicians and staff. We offer our process as an example and guide for other echocardiography laboratories who wish to apply for such accreditation or reaccreditation
    corecore